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Figure 12-29 Transformation of low-pass to asymmetrical-bandpass filter using Moebius mapping.

The mapping accomplishing this transformation is obtainable in the same way as that
of (12-122). The result is

(2} tr)
, w,+ oo+ o
:)2_ {“2 i I

- 12-124
Pw,+ oo+ o ( )

which clearly has the required properties.

The mapping of Eq. (12-123) can also be used, within limits, to obtain a
frequency-asymmetrical bandpass filter response from a low-pass prototype
response. An example is shown in Fig. 12-29, where the choice of w, and v, is
also illustrated. The details of the calculations are left as an exercise (Prob. 12-38).

12-6 LOW-PASS FILTERS WITH MAXIMALLY FLAT DELAYY

Often, a two-port is required to pass a time signal v,(¢) from its input to its output
without serious distortion. This requires that all sine-wave components of the
signal be treated approximatcly the same way by the two-port. Thus, let
A sin (wt + @) be a signal component at the input, and let the corresponding
output signal component be kA sin {wt — f + ¢). Assume next that &k is a

T The approach used in this section i1s somewhat unconventional. It is based on some useful
discussions between one of the authors and H. J, Orchard. The usual exposition of this topic can be
found in Rel. 9. Reference 12 gives a discussion similar 10 ours but applied to bandpass filters.
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constant, mdependent of w, and that the phase shift B equals T, where T is
also a frequency-independent constant. Then the output component is
kA sin [w(t — T) + @] it is thus obtained by scaling the amplitude of the corre-
sponding input component by k and replacing ¢ by ¢ — T. The latter operation
corresponds to a delay of T seconds between output and input. Since all input
components are thus scaled by the same value k and delayed by the same time
interval T, obviously the output signal itself will be kv(t — T), that is, a scaled and
delayed (but undistorted) replica of the input.

As discussed in Sec. 6-2, the phase lag between the output and input voltages
of a doubly terminated two-port is f = £ H(jw). The argument just completed
thus indicates that for distortionless signal transmission the condition

B= LH(jw)= T (12-125)

must hold in the frequency range of the signal.t Thus, the phase must be a linear
Junction of w. Equivalently, the phase delay

Blw)
Tw) 4 (12-126)

and the group delay (also often called envelope delay or differential delay)

dp{w
T,(w) & %i;_) (12-127)
must be constant in the frequency range of the signal.

Note that T (w) is the actual time displacement between the input and output
signals for a steady-state sine wave of frequency w; T,{w), on the other hand, does
not have such direct physical meaning for low-pass circuits.] However, the varia-
tions of T,(w) provide a sensitive measure for the departures of p(w) from the ideal
linear characteristics around the frequency w. Furthermore, if the input signal is a
sine wave of frequency w, modulated by a second sine wave of much lower
frequency w, , then after demodulation the phase delay of the low-frequency signal
s [B(w + o) — f(w))jw, ~ T(w). Thus, T,(w) can readily be measured by meas-
uring the phase delay of the demodulated signal. For these reasons, T(w) is often
used in design.

The calculation of T;{w) can proceed from Eq. (6-7)

B = L H(jw)=Im [In H(jw)] (12-128)
By (12-127)
| (12-129)

tIn addition, of course, « must be a constant in the same range to assure that the scale factor k is
also constant,

{ Although it is possible to find physical interpretation of T{w) in narrow-band frequency-multi-
plex systems.



ECE 580 — Network Theory Bessel Filter 197
Sec. 12 Temes-Lapatra

Since the even (odd) part of a rational function of s is real (imaginary) for s = jo, it

follows that
1 dH(s)|]
= 1w 1T A 12-130
- {Ev [H(s) ds JL:;@ ( )

T(w) = Re [iffé%fsj

Here, as before, Ev [ f(s)] denotes the even part of f(s).
Assume now a polynomial transducer factor H(s) = E(s). Then (12-130) gives

where E'(s) £ dE(s)/ds, and E'(—s) is obtained by substituting —s for s in E'(s).
Evidently, we can define F(s), an even rational function of s such that for s = ju,
F(jo) = T(w). From (12-131)

rip= 5[50, S0 B + EsiEy)

E(s)  E(-s)] 2E(S)E(=s) (12-132)

Assume now that the input signal contains most of its energy in the low-
frequency region. Then, Tj(w) should be constant around w = 0. Using maximally
flat approximation, therefore, we require that the conditions

Tw)=T
dTje)

o) ~°
d* T {w)
d(wz)z

--------------

(12-133)

hold for w = 0, where n is the degree of E(s). These conditions are analogous to
(12-11). Note that since T,{w) is an even rational function of w, only the derivatives
with respect to w* need to be included in (12-133). In terms of 5, (12-133) becomes

d*F
F(sy=T 7}-(;5(;3&0 k=12 ...,0-1 (12-134)

for s = 0.

We shall now use Egs. (12-132) and (12-134) to derive the maximally flat delay
polynomial E(s). As (12-132) shows, the denominator of F(s) is 2E(s)E(—s).
Hence, we shall assume a solution of (12-134) in the form

P(s)

FO) =T+ SEGE =)

(12-135)



ECE 580 — Network Theory Bessel Filter 198
Sec. 12 Temes-Lapatra

where P(s) is some even polynomial. If the degree of E(s) is n, then that of P(s) is,
by (12-133) and (12-135), at most 2n; hence we can write

P(s)=po + p;5° + - + p,5*" (12-136)
By (12-134), in close analogy to (12-12), we obtain then
Po=p1=pr=""=pp; =0 (12-137)
Hence, from (12-135),
2n > -7 S .2n
Fs)= T+~ Pes " CTESE=S) + pys (12-138)

2E(s)E(—s) 2E(s)E(—s)

But as (12-132) shows, the numerator polynomial of F(s) is only of degree 2n — 1.
Hence, the coefficient of s** in the numerator on the right-hand side of (12-138)
must vanish. Therefore, if E(s) is in the form

E(s) = Z":Uaisi (12-139)

the cancellation of the highest-order coefficient in (12-138) requires
2Tag(—=1)"+p,=0  p,=(—1)""2Ta; (12-140)

Now any constant factor can be associated with E(s) without affecting the group
delay, as is evident, for example, from (12-131). Hence we choose at this stage
a, = 1. Furthermore, we normalize the time scale such that T = 1. This implies, by
Eq. (1-24) of Sec. 1-4, that the w and f values are scaled by 1/T'; the frequency and
radian frequency units are thus both equal to w, = 1/T.

With these assumptions (12-140) gives p, = (—1)"*'2 and hence, by Egs.
(12-132) and (12-138),

E'(s)E(~s) 4+ E'(~5)E(s) = 2E(s)E(—s) + 2(—1)** 1s*"
sTHE(S)E(—s) + E(—5)E(s) — 2E(s)E(—s)] = 2(— 1" (12-141)
5”2 Ev {[E'(s) — E(s)]E(—s)} = (= 1)"*"

Differentiating both sides of the last equation with respect to s and noting that

i Ev f{s) = Od %&ﬂ (12-142)
dE(-s)  dE(-s) _ . ‘
- ds  d(—s) E{-s) (12-143)

we obtain after a simple calculation
Ev {[sE"(s) — 2(n + s)E'(s) + 2nE(s)]E(—5)} =0 (12-144)
Let us denote the polynomial in the square brackets by D(s):
D(s) & sE"(s) — 2(n + $)E'(s) + 2nE(s). (12-145)
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Note that by (12-139) the degree of D(s) appears to be n; this, however, is an
illusion, since the coefficient of s" in D(s) is, by (12-145),

d,= —2na, + 2na, =0 (12-146)

Thus, D(s) is only of degree n — 1.

By (12-144), Ev [D(s)E(—s)] = 0, so that D(s)E(—s) must be a pure odd real
polynomial. Hence, its zeros must occur in quadrantal symmetry. Furthermore, as
discussed in Sec. 6-2, realizability requires E(s) to be a strictly Hurwitz polyno-
mial; hence all n zeros of E(—s) must lie in the RHP. Consequently, D(s) must
contain n LHP zeros to complete the symmetric pattern. However, as shown
above, D(s) is only of degree n — 1.

The only possible escape out of this contradiction is to assume either that
E(s) = 0 or that D(s) = 0. The former leads to a useless result; hence, we must set

D(s) 2 sE"(s) — 2(n + $)E'(s) + 2nE(s) =0 (12-147)

This second-order differential equation forms the basis of the solution of our
problem. Substituting {12-139) into {12-147) gives the relation

sy ii—Na;s™ 2 =2n+s)Y ias™' +2n) a;5° =0 (12-148)
i=2 =1 =0

Hence, the coefficient of s* (0 < k < n — 1) satisfiest
(k + 1}kay,y — 2n(k + 1)ay, — 2ka, + 2na, =0

_(k+ 1)(2n — k)

Q= 5t = 1) G 1 (12-149)

Since we have already set a, = 1, the remaining coefficients are given by

_nn+1)  nn+1)

S (') R P TTT)

A ﬁ = 1)(n + 2) _ (n— l)n(n +1){n + 2) )
S T )2 (12-130)
A (n—2)}n+ 3) - (n — 2)(n — Dn(n + 1)(n + 2)(n + 3)
e (2°)(31)
The coefficient of s" ¥ is thus clearly
4\ = (n—k+1)n—k+2)nn+1) (n+k) (12-151)

2%k!

t Notice that {12-149) holds also for k = n in a trivial way since a,,, =0.
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or, using i = n — k and indicating the order of E(s) as a superscript of a;,

pGFDE+2) - Cn—i) (2n—i)!

: 2n~i(n — i)! ~ 227 (n — i)t (12-152)

The coefficients calculated from (12-152) are given, for 1 < n < 11, in Table
12-9. The polynomials defined by these cocfficients are closely related to the Bessel
polynomials. Since they were first described by W. E. Thomson of the British Post
Office Research Station, the filters derived from these transfer functions are called
Bessel filters, Thomson filters, or (as a compromise) Bessel-Thomson filters.

By the construction of the formula for a7, it is clear that under the stated
assumptions [polynomial transfer function, strictly Hurwitz E(s)] the derived solu-
tion to the maximally flat delay approximation problem is unique.

Next, rewrite the formula (12-152) for af as follows

o (n-i-2t QEn—if2n—i-1)
G i1 ) - i— 1) 2i(i — 1)(n — §)
B (2n—i-2) 2(n—i)(2n — 1)+ i{i — 1)
T o n—i— 1)t 2i(i—)(n—i)
@ 1) (2n—i—2)! (2n—i—2)! (12.153)

i —i— 1)1 27 {i—2)!(n—1i)!
Using (12-152), with n replaced first by n — 1 and then by n — 2, (12-153) gives

al=02n- )at ' +al=3 (12-154)

It is easy to show (see Prob. 12-41) that (12-154) holds for all i between 0 and

n, that is, for 0 < i < n. Hence, the polynomials of degrees n, n — 1, and n — 2
satisfy

n n—1 n
Efs)= Yals'=(2n—1) Y at" s+ Y al" 35?2
i=0 i=0 i=0
={(2n — 1)E""'(s) + sE" *(s) (12-155)

Here, we indicated the degree of E(s) by its superscript.

Equations (12-154) and (12-155) provide a useful recurrence process for calcu-
lating the E"(s). Forn = 0,a3 = af = 1;forn = 1,4} = a} = 1; and from (12-152),
ay =24[(2)(0!11!)] =1 since 0! =1!= 1. Hence E°(s)=1, E'(s)=s+ 1 and
therefore by (12-155)

E*(s) = 3E'(s) + s*E%(s) = s> + 35 + 3
E3(s) = SE*(s) + sE'(s) = s* + 652 + 155 + 15

etc. Thus, all entries of Table 12-9 can be obtained.
Another useful relation obtainable from (12-152) concerns the derivative of
Es):

dEM n ) n—1
...... (.12 = Y alis"' = ¥ byt (12-156)
k=0
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where k £ i — 1. Clearly, from (12-152),

. - _(@n—k-1)!
b= (k+ l)at, = (k + I)zn_-:c-l(k_l_ in—k— 1)!
(2n — k)! (2n — k —1)!

ﬂzﬂ-—kk!(n_k)!_zn“k(k_ i)!(n——k)l (12-157)

Using (12-152) again to identify the two terms on the right-hand side, we find
b} =af — af | (12-158)

For k=0, a;~} =0, and hence (12-158) gives b} = 4, which is valid since
by =a} =ap for all n Similarly, for k=n (12-158) predicts b} =a]—
ai~} =1—1=0 for all n which is also true. Hence, (12-158) holds for0 < k < n
and thus
k' Yaist—s Yy apsistTl = E"(s) — sE*1(s) (12-159)
ds k=0 k=0
Equations (12-155) and (12-159) can be used (see Probs. 12-43 to 12-45) to
show that E"(s) does indeed satisfy (12-141) and thus the maximally flat-delay
property. Using these relations, it can also be readily shownt that all E*(s) are
strictly Hurwitz, as required by physical realizability and as assumed earlier in the
derivation. Dividing both sides of (12-155) by sE"™!(s) gives

EYs) 2n—1 sSE"*s)

sE”(s) s E*(s) (12-160)
For n=2, E"%(s) = 1, and E""!(s) = s + 1, as shown earlier. Hence,
E¥s) 3 s
sEXs) s s+1 Sl
is a PR function. So is its reciprocal, and hence so is
3 i
L B (12-162)

sEXs) s EXs)
Thus, by (12-160), E*(s)/sE®(s) is also PR. Proceeding this way, we see that
E'(s)/sE""'(s) is PR for all n. Hence, E"(s) and E""!(s) both have at least the
Hurwitz property for all n. To show that they are striczly Hurwitz we must prove
that they do not have any jw-axis zeros, i.e, any factors of the forms s* + w3 or s.
Such factors (as shown in Chap. 4) are present in both the even and odd parts of,
say, E""'(s) and therefore of SE"~(s)/E(s).
By (12-159),
dE"(s)/ds | _SE” 's)

E'(s) E"(5)

(12-163)

+ This derivation is due to H. J. Orchard.



ECE 580 — Network Theory Bessel Filter 204

Sec. 12 Temes-Lapatra

and hence, from Egs. (12-132) and (12-138) with T = 1,

dE"(s)/ds sE"(s) p. 2™
! E r—— C R T A
F(s) =Ev E'(s) 1—Ev ) 1+ SE(5) B — )
- ™ (12-164)
Ev SE™ 1s) P,

E'(s)  2E"(s)E"(—s)

This shows that jw-axis zeros of E*~!(s) can only occur for s = 0. However, by
(12-152), the constant term of E"~!(s) is

- (2n — 2)!
dg . Im%o (12-165)

and hence E"~!(s) is not zero for s = 0. Thus, E"~*(s) has no jw-axis zeros and is

therefore strictly Hurwitz. Since our derivation is valid for all n, the strictly Hur-

witz character of the maximally flat-delay polynomials has thus been proved.t
It is also reassuring to note that, by (12-152),

a _ (2n—i)t 2! Y9! 1
a2 il (n—)t2n)! 272n)Y(2n — i)l
(n—i+1)n—i+2)-(n—1n 1

= - e 12-166
272n—i+ 1)2n—i+2) - (2n— 1)2ni! ( )
and hence for n = o
al S B |
e SIS LY 12-167
@ 272n) il il (12-167)
Hence
Es)=ayy Hsoay D Els)-abe (12-168)
i=o Qo i=o !

that is, E*(s) tends (apart from the scale factor aj) to the unit delay operator ¢’.
The asymptotic behavior of the loss a{w) = 10 log [E(jw)E(~jw)] corre-
sponding to E"(s) can also be found for large values of n. We have

E*(s)E"(—s) = (éoai‘s") [ioar(— 1)%*] (12-169)

t The alert reader will have noted that the above proof of the strictly Hurwitz property of E'(s)
does not exclude the possibility of a common zero of E(s) and E" (s} in the RHP or on the jeo axis. It
can, however, be casily shown that E"{(s) and E” '{s) cannot have any zeras in common. The proof is
based on (12-155) and is hinted at in Prob. 12-49.
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This gives a pure even polynomial of the form by + b, s* + b, s* + ---. To find the
first few coefficients, we obtain, by repeatedly using (12-149),

ay = ap

n n—1 n

i

) n—2 {12-170)
“=3en- 1)@

*T6(2n—1)2n—3)"7°

Hence, the lowest-order coefficients of E”(s)E™(—s) are

by = (05)2

ny2
by, = 2a3a5 — (a})’ = ~ 2(:‘?3—1 (12-171)

n—1 (af)?

b, = 2a3a} — 244} + (a})? =

T 2n-3(2n-1)?
Thus for s = je, that is, for s = —w?,
w? n—1{ w* \?
E™" i)E™(—i _ 2 Lo . .
(jo)E™(—jew) = (ap) !1 g e g e 3(2n = ]) + ] (12-172)

It is of interest to compare this expression with the Taylor series of the gaussian
Sunctiont

2 2
(e = @1+ 224 32

2
pde s z) +J (12-173)

Clearly, the relative difference is

ng)zewzfun— 1y EﬂUw)Eﬂ(_jW) _ e*wzf(ln-iﬁ .,..L
(ag)?e™ 3 1) 2(2n — 3)(2n — 1)

+ higher-order 1erms} (12-174)
Hence, for n > 3, and for w values not in excess of, say, 3,1 the approximation
E"(jw)E"(—jw) ~ (ab)?e”™m- 1 (12-175)
holds. The loss is then
10loge

a = 10 log [E"(jw)E™(—jw)] = 20 log a + w? (12-176)

2n — 1

+ A gaussian function f(x) 1s of the form f{x) = Ae
t In terms of denormalized units, this condition is w < 3/7T.
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The approximation of (12-175) can also be made in (12-138). Using (12-140),
we get then (with T = 1)

err

T st § s s csmances: T o Bt Togitp i1 12-177
Often, we require the zero-frequency loss to equal zero.t II we choose
H{(s) = E"(s)/a}, this will be achieved. Then (1 2-176} will be replaced by
10 log e
x= 2n—1 =

The group delay will, of course, remain unchanged.

2 (12-178)

¥ This permits R; = R, in the resuliing circuit.

)]

Figure 12-30 A comparison of the exact voltage ratio |4,| = |V,/¥;| calculated from the maximally
fiat delay function H(s) = E"(s)/aj with the approximate response found from Eq. (12-175); (a) for
odd degrees n; (b) for even degrees.



ECE 580 — Network Theory Bessel Filter 207
Sec. 12 Temes-Lapatra

Accurate expression
————- Approximation of Eq. {12-177)

(&)

Figure 12-31 A comparison of the exact group delay T,(jw) calculated from the maximally flat delay
transfer function H(s) = E"(s)/a} with the response obtained from the approximation (12-177) (a) for
odd degrees n; (b) for even degrees.

The output-input amplitude response af/|E(jw)| and the group-delay re-
sponse T (jw) associated with H(s} = E"(s)/aj are plotted for low values of n in
Figs. 12-30 and 12-31, respectively. The maximally flat property is evident for the
delay response. To illustrate the quality of the approximations given in Egs.
(12-175) and (12-177), these figures also show the responses computed from the
approximate expressions.
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Example 12-11 Find a transfer function such that the group delay is 10 us at low frequen-
cies, with a deviation less than 0.5 percent for | f'| < 30 kHz. The loss should be zero at
zero frequency and should remain less than 1 dB for | f| < 30 kHz.

To satisfy the zero-loss condition for @ =0, we choose the frequency-normalized
transfer function in the form

E(s)
ap

H{s) =

The degree n can be found from the specifications on the loss and delay deviations.
Since wT = (273 x 10*)(10” %) ~ 1.885, with (12-178) the loss requirement gives at the
normalized limit frequency ®T

4.343
2n—1

10 log e

2 .
1 (T) =~

[(273 x 10%)(10~%)2 < 1

This leads to
n>82

Hence, » = 9 is the minimum usable degree. For n = 9, the relative delay deviation at the
limit frequency is, by (12-177),
AT _

= = (a) " (@T) e P17 5 617 x 1071

This is much less than the prescribed 0.5 percent and hence meets the delay specification,
Using Table 12-9, we find frequency-normalized transfer function to be

9
H(s) = Eaés) = ;3 ii}a?s‘
x 290196 x 10785 + 1.30588 x 1075
+ 2.87294 x 10737 + 402212 x 107 %°
+ 3.92157 x 107 %s® 4 2.74510 x 10~ %s*
+ 0.137256s* + 0.470588s% + 5 + 1

To denormalize H(s), s must be replaced by sT. This changes af into @7 T"; in our example
the leading coefficient becomes 2.90196 x 10~ 3%, Hence normalized calculation is advis-
able to avoid over- or underflows.

It is interesting to note that the output-input transfer function 1/| H(jw)| and
the impulse response of the maximally flat-delay filter are both gaussian functions
of w and ¢, respectively. The proof is outlined in Prob. 12-48.

As mentioned earlier, the Bessel-Thomson (maximally flat-delay) approxima-
tion is analogous to the Butterworth (maximally flat-loss) approximation dis-
cussed in Sec. 12-2. It can be anticipated that a more efficient function may be
obtained if an equal-ripple, rather than a maximally flat, approximation to a
constant delay is achieved. Such an approximation leads to a function analogous
to the Chebyshev function described in Sec. 12-3. It is illustrated in Fig. 12-32.
The derivation of such functions can be performed using the Z variable in-



